6,748 research outputs found

    The group of strong Galois objects associated to a cocommutative Hopf quasigroup

    Get PDF
    Let H be a cocommutative faithfully flat Hopf quasigroup in a strict symmetric monoidal category with equalizers. In this paper we introduce the notion of (strong) Galois H-object and we prove that the set of isomorphism classes of (strong) Galois H-objects is a (group) monoid which coincides, in the Hopf algebra setting, with the Galois group of H-Galois objects introduced by Chase and Sweedler

    Classical emulation of quantum-coherent thermal machines

    Get PDF
    The performance enhancements observed in various models of continuous quantum thermal machines have been linked to the buildup of coherences in a preferred basis. But, is this connection always an evidence of `quantum-thermodynamic supremacy'? By force of example, we show that this is not the case. In particular, we compare a power-driven three-level continuous quantum refrigerator with a four-level combined cycle, partly driven by power and partly by heat. We focus on the weak driving regime and find the four-level model to be superior since it can operate in parameter regimes in which the three-level model cannot, it may exhibit a larger cooling rate, and, simultaneously, a better coefficient of performance. Furthermore, we find that the improvement in the cooling rate matches the increase in the stationary quantum coherences exactly. Crucially, though, we also show that the thermodynamic variables for both models follow from a classical representation based on graph theory. This implies that we can build incoherent stochastic-thermodynamic models with the same steady-state operation or, equivalently, that both coherent refrigerators can be emulated classically. More generally, we prove this for any N-level weakly driven device with a `cyclic' pattern of transitions. Therefore, even if coherence is present in a specific quantum thermal machine, it is often not essential to replicate the underlying energy conversion process.Comment: 13 pages, 4 figures; references updated; appendix adde

    Charge control in laterally coupled double quantum dots

    Get PDF
    We investigate the electronic and optical properties of InAs double quantum dots grown on GaAs (001) and laterally aligned along the [110] crystal direction. The emission spectrum has been investigated as a function of a lateral electric field applied along the quantum dot pair mutual axis. The number of confined electrons can be controlled with the external bias leading to sharp energy shifts which we use to identify the emission from neutral and charged exciton complexes. Quantum tunnelling of these electrons is proposed to explain the reversed ordering of the trion emission lines as compared to that of excitons in our system.Comment: 4 pages, 4 figures submitted to PRB Rapid Com
    corecore